
© Copyright Ian D. Romanick 2008

4-March-2008

VGP352 – Week 9

⇨ Agenda:
­ Quiz #4
­ Final in-class presentation
­ Procedural textures

­ Animated height maps
­ Generating normal maps from height maps

© Copyright Ian D. Romanick 2008

4-March-2008

Animating Height-map – Water

⇨ We want to animate a height-map that
represents small waves

© Copyright Ian D. Romanick 2008

4-March-2008

Animating Height-map – Water

⇨ We want to animate a height-map that
represents small waves

­ Simulate this as a mesh of particles connected by
springs

­ Each water particle is “pulled” up or down by
surrounding water

© Copyright Ian D. Romanick 2008

4-March-2008

Animating Height-map – Water

⇨ We want to animate a height-map that
represents small waves

­ Simulate this as a mesh of particles connected by
springs

­ Each water particle is “pulled” up or down by
surrounding water

⇨ Track various data for simulation:
­ Store wave height in R of texture
­ Store wave velocity in G of texture
­ Wave “mass”, spring constants, and time step are

uniforms

© Copyright Ian D. Romanick 2008

4-March-2008

Animating Height-map – Water

⇨ Springs apply a force, f
s
, proportional to their

extension
­ Force applied to a water element by one of its

neighbors is:
f s=h×K s

Difference in height Spring constant

© Copyright Ian D. Romanick 2008

4-March-2008

Animating Height-map – Water

⇨ Springs apply a force, f
s
, proportional to their

extension
­ Force applied to a water element by one of its

neighbors is:

­ Updated velocity is:

f s=h×K s

Difference in height Spring constant

V n=
 t×∑ f s

m
V n−1

Elapsed time

Mass of water

© Copyright Ian D. Romanick 2008

4-March-2008

Animating Height-map – Water

⇨ Springs apply a force, f
s
, proportional to their

extension
­ Updated position is:

H n= t×V nH n−1

© Copyright Ian D. Romanick 2008

4-March-2008

Animating Height-map – Water

⇨ With no other forces, this simulation would
oscillate forever

© Copyright Ian D. Romanick 2008

4-March-2008

Animating Height-map – Water

⇨ With no other forces, this simulation would
oscillate forever

­ Add one more “virtual” spring to pull each water
particle to 0.5

­ This spring should have a very small constant

© Copyright Ian D. Romanick 2008

4-March-2008

Animating Height-map – Water

void main(void)
{
 vec4 me = texture2D(wave_state, gl_TexCoord[0].xy);
 vec2 f_vec = vec2(-4.0 * me.x, 0.5 - me.x);

 f_vec.x += texture2D(wave_state, north).r;
 f_vec.x += texture2D(wave_state, south).r;
 f_vec.x += texture2D(wave_state, east).r;
 f_vec.x += texture2D(wave_state, west).r;

 float F = dot(spring_constant, f_vec);
 float V = (time_over_mass * F) + (me.y - 0.5);
 float H = (time * V) + me.x;

 gl_FragColor = vec4(H, V + 0.5, 0.0, 0.0);
}

© Copyright Ian D. Romanick 2008

4-March-2008

Convert Height-map to Normal-map

⇨ Given a height-map (true bump-map), generate
the corresponding normal-map

© Copyright Ian D. Romanick 2008

4-March-2008

Convert Height-map to Normal-map

⇨ Given a height-map (true bump-map), generate
the corresponding normal-map

­ The X component of the normal is the inverse slope of
the line between the east and west neighbors

­ Likewise for the Y component and the north and south
neighbors

© Copyright Ian D. Romanick 2008

4-March-2008

Convert Height-map to Normal-map

⇨ Task ideally suited to fragment shader!

© Copyright Ian D. Romanick 2008

4-March-2008

Convert Height-map to Normal-map

⇨ Task ideally suited to fragment shader!
­ Using render-to-texture, draw a single, texture-sized

quad with texture coordinates ranging from (0, 0) to
(1, 1)

© Copyright Ian D. Romanick 2008

4-March-2008

Convert Height-map to Normal-map

⇨ Task ideally suited to fragment shader!
­ Using render-to-texture, draw a single, texture-sized

quad with texture coordinates ranging from (0, 0) to
(1, 1)

­ At each fragment read the 4 neighbor texels
­ Call them n, s, e, and w
­ Be careful of texture coordinate wrap modes
­ Apply scale factor to exaggerate bumpiness

© Copyright Ian D. Romanick 2008

4-March-2008

Convert Height-map to Normal-map

⇨ Task ideally suited to fragment shader!
­ Using render-to-texture, draw a single, texture-sized

quad with texture coordinates ranging from (0, 0) to
(1, 1)

­ At each fragment read the 4 neighbor texels
­ Call them n, s, e, and w
­ Be careful of texture coordinate wrap modes
­ Apply scale factor to exaggerate bumpiness

­ Normal direction is:
vec3 a = vec3(0.0, scale, w.x – e.x);
vec3 b = vec3(scale, 0.0, n.x – s.x);
vec3 n = normalize(cross(b, a));

© Copyright Ian D. Romanick 2008

4-March-2008

Convert Height-map to Normal-map

⇨ Task ideally suited to fragment shader!
­ Using render-to-texture, draw a single, texture-sized

quad with texture coordinates ranging from (0, 0) to
(1, 1)

­ At each fragment read the 4 neighbor texels
­ Call them n, s, e, and w
­ Be careful of texture coordinate wrap modes
­ Apply scale factor to exaggerate bumpiness

­ Normal direction is:
vec3 a = vec3(0.0, scale, w.x – e.x);
vec3 b = vec3(scale, 0.0, n.x – s.x);
vec3 n = normalize(cross(b, a));

­ Convert components to [0, 1] range and write to
gl_FragColor

© Copyright Ian D. Romanick 2008

4-March-2008

Break

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader

⇨ Task: create a procedural texture for impact
craters on, for example, the moon

Original image from http://www.hq.nasa.gov/office/pao/History/SP-362/ch5.2.htm

http://www.hq.nasa.gov/office/pao/History/SP-362/ch5.2.htm

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader

⇨ Two parts to this shader

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader

⇨ Two parts to this shader
­ Height / normal
­ Color

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader

⇨ Two parts to this shader
­ Height / normal
­ Color
­ Attack each separately, then try

to unify

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader – Height

⇨ Craters are generally circular
­ Height varies with distance from center

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader – Height

⇨ Craters are generally circular
­ Height varies with distance from center
­ Associate a height with each distance where there is

a change

H
0
H

1

H
3
H

4

R
0R

2
R

3
R

4
R

1

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader – Height

⇨ Select an interpolation scheme between each
region

­ R
0
 to R

1
 and R

1
 to R

2
 could be linear, R

2
 to R

3
 and R

3
 to

R
4
 could be exponential, etc.

H
0
H

1

H
3
H

4

R
0R

2
R

3
R

4
R

1

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader – Height

⇨ In shader:
­ Determine fragment distance from center

r = length(position – center);

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader – Height

⇨ In shader:
­ Determine fragment distance from center

r = length(position – center);
­ Determine which region contains the fragment

if (r < crater_parameters[1].x) {
 ...
} else if (r < crater_parameters[2].x) {
 ...
} else ...

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader – Height

⇨ In shader:
­ Determine fragment distance from center

r = length(position – center);
­ Determine which region contains the fragment

if (r < crater_parameters[1].x) {
 ...
} else if (r < crater_parameters[2].x) {
 ...
} else ...

­ Determine fragment location in region
t = (r – crater_parameters[n].x)
 / (crater_parameters[n+1].x - crater_parameters[n].x);

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader – Height

⇨ In shader:
­ Determine fragment distance from center

r = length(position – center);
­ Determine which region contains the fragment

if (r < crater_parameters[1].x) {
 ...
} else if (r < crater_parameters[2].x) {
 ...
} else ...

­ Determine fragment location in region
t = (r – crater_parameters[n].x)
 / (crater_parameters[n+1].x - crater_parameters[n].x);

­ Perform interpolation
h = mix(crater_parameters[n+1].y,

crater_parameters[n].y, t);

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader – Height

⇨ In shader:
­ Determine fragment distance from center

r = length(position – center);
­ Determine which region contains the fragment

if (r < crater_parameters[1].x) {
 ...
} else if (r < crater_parameters[2].x) {
 ...
} else ...

­ Determine fragment location in region
t = (r – crater_parameters[n].x)
 / (crater_parameters[n+1].x - crater_parameters[n].x);

­ Perform interpolation
h = mix(crater_parameters[n+1].y,

crater_parameters[n].y, t);
­ Write calculated height

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader – Color

⇨ Color works in a similar manner
­ Use one color inside the crater with alpha set to 1.0
­ Use another color outside the crater

­ Set alpha to 1.0 in “spokes” from crater
­ Falloff to alpha = 0.0 off spokes

H
0
H

1

H
3
H

4

R
0R

2
R

3
R

4
R

1

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader – Color

⇨ Selecting crater interior color is trivial
­ If r is less than R

3
, use interior color

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader – Color

⇨ Selecting crater interior color is trivial
­ If r is less than R

3
, use interior color

⇨ Selecting spoke color is more complex

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader – Color

⇨ Selecting crater interior color is trivial
­ If r is less than R

3
, use interior color

⇨ Selecting spoke color is more complex
­ Need to know distance from center and angle (i.e.,

polar coordinates)

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader – Color

⇨ Selecting crater interior color is trivial
­ If r is less than R

3
, use interior color

⇨ Selecting spoke color is more complex
­ Need to know distance from center and angle (i.e.,

polar coordinates)
­ Place spokes separated by fixed angles

­ Spokes are determined by a cosine wave in polar
coordinates

­ r
spoke

 = cos( × frequency)

© Copyright Ian D. Romanick 2008

4-March-2008

Crater Shader – Color

⇨ Selecting crater interior color is trivial
­ If r is less than R

3
, use interior color

⇨ Selecting spoke color is more complex
­ Need to know distance from center and angle (i.e.,

polar coordinates)
­ Place spokes separated by fixed angles

­ Spokes are determined by a cosine wave in polar
coordinates

­ r
spoke

 = cos( × frequency)

­ Select random length and thickness for each spoke
­ Noise to the rescue
­ Thickness is determined by raising (r

spoke
 × amplitude) to a

power

© Copyright Ian D. Romanick 2008

4-March-2008

References

Ebert, David, et. al., Texturing and Modeling: A Procedural
Approach, second edition, Morgan-Kaufmann, 1998. pp. 315 –
318.

­ This section provided the inspiration for the crater shader.

© Copyright Ian D. Romanick 2008

4-March-2008

Next week...

⇨ Depth of field post-process effects
⇨ Discuss final
⇨ Discuss final project

© Copyright Ian D. Romanick 2008

4-March-2008

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of IBM or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

